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Abstract 

Closed, compact ,  oriented,  Lorentzian four-manifolds  are investigated using e lementary  
cobordism theory.  The  groups o f  cobordism classes o f  such manifolds  under  various 
cobordism relations are calculated. Oriented vector cobordism classes form an infinite 
free cyclic group and oriented cobordism classes form a subgroup of  index two in the  
four-dimensional  or iented cobordism group, The properties o f  compact  five-manifolds 
bounded  by closed, compact ,  oriented,  Lorentzian four-manifolds are investigated and 
some speculat ions made  on  their possible interpretat ion.  

In Whiston (1974) it was demonstrated that any closed, compact,  orient- 
able space-time is cobordant in the unoriented sense, that is, bounds a com- 
pact five-manifold. It could be asserted that  this result is intuitively obvious: 
' i f  a manifold is compact  (finite), closed (unbounded) and orientable, it must 
"close in on itself" and therefore represent either the inside or the outside 
edge of  "something" '. This intuitive reasoning (based on the properties of  
two-manifolds) is fallacious as there exist compact,  closed, orientable four- 
manifolds which are not boundaries (the complex projective plane C P  2 is one 
example). The extra structure imposed on a space-time (the Lorentzian 
structure) ensures that it is sufficiently simple topologically for it to conform 
to the above reasoning. Therefore if space-time is closely modeled by a closed, 
compact,  orientable, smooth Lorentzian four-manifold it must be the bound- 
ary of  some compact  five-manifold: a 'Hyperspace' .  Hyperspaces are therefore 
as 'reasonable' as the structures imposed on a space-time, so we examine 
the reasonability of  the latter structures. Firstly, unbounded space-times are 
aesthetically pleasing since they are topologically homogeneous (boundary 
points are distinguished in a bounded manifold). The orientabitity of  a space- 
time is guaranteed if the reasonable conditions of  time and space-orientability 
are fulfilled, In fact, if the CPT theorem has any global validity, time reversals 
and space inversions must occur simultaneously, which is sufficient for space- 
time to be an orientable manifold. The smooth Lorentzian structure is a re- 
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quirement of being able to determine the local inertial frames in a consistent 
smooth way over the whole space-trine. Compactness is probably the least 
justifiable property. This is because compact, time-orientable space-times have 
closed trips, violating causality. However, as yet, there is no observational evi- 
dence that Space-Time is non-compact or that it is time-orientable. Therefore, 
compact, closed orientable, smooth, Lorentzian four-manifolds still represent 
a possible model for Space-Time and the 'wormhole trips through higher 
dimensions' and the 'stargates' so beloved by the science-fiction writers have 
at least a mathematical existence. There is no unique choice of a hyperspace 
for a given space-time, for by plumbing on a closed, compact five-manifold to 
a hyperspace, one obtains another. By using more complicated variants of  or- 
dinary unoriented cobordism theory, one can ask if there exist hyperspaces 
with certain geometric structures (such as orientations or spinor-structures) 
which extend similar structures off the boundary space-trine. In this article, we 
propose to examine the possible types of hyperspaces that a space-time can 
bound using the cobordism theories mentioned above. Cobordism is also a 
classificational tool and we shall use it to classify compact, closed, orientable 
space-time up to the cobordisms. 

Perhaps the central problem of space-time geometry is to classify all possible 
Lorentzian structures on smooth four-manifolds. A subproblem is, of course, 
to determine which (smooth) four-manifolds can admit a Lorentzian structure. 
The latter problem was solved by Steenrod (1951) and by Markus (1955). Any 
non-compact four-manifold admits a Lorentzian structure whilst a compact 
four-manifold can admit one iff it has trivial Euler number. The result was 
proved in the following way. Recall that a (smooth) Lorentzian structure on a 
(smooth) four-manifold X is a reduction of the Einstein (frame) bundle 
GL(4)(X) of X to the Lorentz group O(1, 3). Such a reduction is equivalent 
to finding a section of the associated fibre bundle with fibre GL(4)/O(1, 3), 
denoted by GL(4)/O(1, 3)(X). Steenrod showed that the latter bundle was 
fibre homotopy equivalent to the projective bundIe RP3(X) of all one- 
dimensional subspaces of the tangent bundle N4(X) = T(X) of X. Therefore 
the Einstein bundle reduces to the Lorentz group iff there is a global section 
ofg~p3(x) i f fX admits a tangent line.bundle iff T(X) splits off  a line-bundle: 
T(X) = ~3 e ~1. Markus showed that the obstruction to finding a tangent line 
bundle on X was essentially the Euter class ex of X, a cohomology class in 
H4(X, 7/). Therefore, i f X  is non-compact (implying that H4(X, 7/) = 0), there 
is no obstruction. If X is compact and if (X)  is the 7/-orientation class of X in 
H4(X, 7/), ex(X) = x(X), the Euler number of X and therefore the obstruction 
vanishes iff ×(X) = 0. 

By the above, to classify non-compact Lorentzian manifolds, one has first 
to classify non-compact four-manifolds up to diffeomorphism. Such a classifi- 
cation is impossible by a classic theorem of Markov (1958). Cobordism is a 
much weaker relation between manifolds. Two manifolds X1 and X2 of the 
same compactness type are called cobordant iff their disjoint sum is the 
boundary of a manifold of their compactness type. Any two non-compact 
manifolds are cobordant; for X1 = 3(Xlx [0, 1 D and X2 = 3(X2x [0, 1 D and 
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therefore if we remove the interior of coordinate disc in X1x] 0, 1 [ and in 
X2x] 0, 1 [ and identify the boundary spheres of the discs, we obtain a non- 
compact manifold with boundary Xt tA X2. Cobordism is, however, non-trivial 
between compact manifolds and we shall classify closed, compact, orientable, 
smooth, four-manifolds of Euler number zero (which we call space-time mani- 
folds) up to cobordisms defined below (which in dimension four include 
homotopy equivalence). The cobordism class of a space-time manifold will 
turn out to be uniquely determined by its topological signature sig( ): an 
integer invariant of the oriented manifold. The latter invariant has been dis- 
cussed by Avez (1964) in the context of space-time geometry. Avez showed 
that static space-times and space-times of Petrov type III have trivial signature, 
providing an interpretation of sig( ) as an obstruction to geometric structure. 
As a by-product of our analysis, we obtain the following interpretations of  
signature. If X is any space-time manifold, there exists a compact hypermani- 
fold H with OH = X and H carries a one-frame field interior oriented on X. 
Equivalently, for any two space-time manifolds Xa and X2 there exists a com- 
pact hypermanifold H with boundary 3//=-X1 U X2 and H carries a one-frame 
field interior normal on X1 and exterior normal on X2. The signature plays 
the following role. An oriented space-time manifold X + is the oriented bound- 
ary 0o H+ = X + of a compact oriented hypermanifold H + iff sig (X +) = 0. Equiv- 
alently, two oriented space-time manifolds X~- and X~- form the oriented 
boundary of a compact oriented mind fold H+: 0o H+ = X + U X~- iff sig(X~-) = 
sig(X~'), H carrying a one-frame field interior normal on X1 and exterior 
normal on X2. Suppose that H is a hypermanifold for X : OH = X. Define a 
hypertrip (connecting points of X through hyperspace H ) 7 : x  1 -~--~ x2 for 
xl,x2 E X a s  a path fromxo t o x l  i n H  normal to X a t x l  and x 2 such that 
7 -1 (X) consists of only the points Xl and x>  Because H admits a one-frame 
field, T(H) splits o f f a  trivial line-bundle: T(H) = ~4 • ~1 where ~4 is a four- 
plane bundle tangent to X on OH. Recall (Husemoller, 1966) that a vector 
bundle ~ is orientable iff its first Stiefel-Whitney class wl(~) is trivial. Then, 
by the naturality properties of Stiefel-Whitney classes, wl (T(H)) = wl (~4) + 
wl (~1) = wl (~4). Thus H is orientable iff T(H) is orientable iff ~4 is an orien- 
table vector bundle. By our earlier remarks, X bounds a hypermanifold H with 
a transversely-oriented, oriented, four-plane bundle tangent to X on 3H iff 
sig(X) = 0. But such a ~4 is orientable iff its local orientations are preserved 
along all paths in H. Therefore if sig (X) @ 0, hypertrips may reverse the 
orientation of ~4, that is of X, since ~4 coincides with T(X) on X. (In the 
hyperspace interpretation, taking a hypertrip between space-time points 
could reverse the hypertripper's sense of time or his sense of left and right 
relative to a trip through real space-time.) One can easily show that if a com- 
pact, oriented manifold has an orientation reversing autodiffeomorphism, it 
must have zero signature. We shall show that i f X  + is an oriented space-time 
manifold, there exists a compact, closed, oriented four-manifold Y+ and a 
compact, oriented five-manifold H + with oriented boundary 0o H+ = X + U 2Y- 
(Fig. i). If  Y admits an orientation reversing autodiffeomorphism °f' (implying 
that sig(Y +) = ½ sig(X +) = 0), we can join the two copies of Y along ' f '  to 
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Figure 1. Figure 2. 

obtain an oriented five-manifold H+ with oriented boundary X + (Fig. 2). The 
signature and the Euler number of an oriented four-manifold X are related by 
sig(X) = x(X) rood(2) (a consequence of Poincar~ duality on X). Thus the 
signature of a space-time manifold is always even. More complicated structures 
on X, such as spinor-structures, imply more detailed information about the 
signature. Briefly, a spinor-structure on a space and time-orientable space-time 
X is an extension of its Lorentz bundle L+ ~'(X) to the group Spin+ (I ,  3) = 
SL (2, C ) (Porteous, 1969). Such an extension exists iff the canonical 
reduction of L+~(X) to SO(3) (which always exists becauseL+t/SO(3) is 
contractible), extends to the group Spin(3) = SU(2). The former is a spin- 
structure on the real three-plane bundle ~3 associated to the principal bundle 
SO(3)(X), where T(X) = ~3 ~ ~1 splits as a direct consequence of the 
Lorentzian structure. ~3 admits a spin-structure iff w 1 (~3) and w2 (~3) 
are trivial. But wl (~3) ; 0 because X is space-orientable and w2(~ 3) = 
w2 (T(X)). Therefore a space-time manifold admits a spinor-structure iff it 
admits a spin-structure iff its Riemannian structural group SO(4) extends to 
Spin(4). By a classic result of Rohlin (1951), the first Pontryagin number of a 
compact four-dimensional spin-manifold is divisible by 48. Therefore by a fur- 
ther result of Thom, the signature of a spinor-space-time manifold is divisible 
by 16. (Hence, for example, if we form the connected sum of two copies of 
CP 2 to get a manifold of Euter number +4 and signature +2, and then add two 
disjoint one-handles (S 3 x I )  to kill the Euter number, we get a space-time 
manifold of signature +2 which cannot admit a spinor-structure.) We shall 
show that two spinor space-time manifolds form the spin-boundary of a com- 
pact five-dimensional spin-manifold iff they have the same signature. 

Other topological properties of hypermanifolds of interest can be deduced 
from those of their bounding space-times. For example no space-time of non- 
trivial signature can bound a simply connected hypermanifold. If a space-time 
is an oriented boundary, it cannot bound a contractible hyperspace (contrast 
this to the case of the oriented boundary S 4 which bounds the closed five-disc. 
One can show that any four-dimensional oriented boundary bounding a con- 
tractible oriented manifold must have cohomology groups isomorphic to those 
of $4). 

Some Topological Invariants 
In this section, X will denote a compact, closed, oriented, smooth 4k- 

manifold with k i> 1. Functorially associated with X are the graded homology 
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modules H.(X ,  IN) and the graded cohomology algebras H*(X, ~ )  where ~ = 
Z 2, 77 or N. The K-cohomology and the K-homology are paired to K by the 
Kr6necker product. Because X is supposed orientable, H4k(X  , [1~) ~ ~(l~. We 
shall denote the generators o f H 4 k ( X  , 77 ) and H41c(X , Z 2)by ( X )  and ( X )  2 
respectively. The following characteristic classes and numbers are also associ- 
ated with X: 

1. Stiefel-Whitney characteristic classes wi ~ Hi(X, 77 2 )  for 0 ~ i ~ 4k 
and Stiefel-Whitney numbers in 77 2 : wr] . •. Wrn n (X)2 for ia rl + ' " ' + 

inrn = 4k. The top Stiefel-Whitney number w4x(X)  2 is related to the 
Euler number •(X) by w4x(X)2 = ?((X) rood(2) (the residue class of  
x (x) rood (2)). 

2. Pontryagin characteristic classes Pi ~ I-i4i(X, -~) for 0 ~ i ~< k and 
Pontryagin numbers (integers)P(,  . . .  P{# for ia rl + " " " + inrn = k. 
The Pontryagin classes reduced rood(2) are related to the Stiefel- 
Whitney classes by [Pi] rood(2) = w~i , and therefore for the case k = t 

we get wz2(X)2 = (PI (X) )  rood (2). 

3. The Hirzebruch signature (Hirzebruch, 1966) of X, sig (X) (sometimes 
called the index), which is defined as follows: The cohomology product 
H2k(X,  g~) ® H2k(X, g~ ) -+ I-14k(X, ~ ) induces a symmetric, non- 
degenerate, bilinear form on the vector space H2X(X, R ) defined by bx(x ,y)  = 
x .  y ( X )  for x, y ~H2k (X ,  R )  where ( X )  is the basis ofH2k(X,  g~). 
sig(X) is defined as the signature of  X, that is, sig(X) = p - n where p is 
the number of  positive eigenvalues and n the number of negative eigen- 
values orb x .  Because p + n = ~2k(X) (where ~i(X) = dime (Hi(X, N )) is 
the ith Betti number  of  X) ,  sig(X) -= t32k(X ) rood (2). But Poincar~ 
duality, H 4 x -  q (X, ~ ) ~ Hq (X, ~ ), and Hq (X, R ) ~ Hq (X, N ) * implie s 
that ~((X) = 2~=x 0 ( - t ) i ~ i ( X )  = ~32x(X ) rood (2). Therefore sig (X) =- 
x (X)  rood(2). Note that i f X  admits an orientation reversing autodiffeo- 
morphism ' f ' ,  sig(X) = 0. For then, if f *  denotes the cohomology auto- 
morphism induced by f and f ,  denotes the homology automorphism, 
bjc( f*x,  f ' y )  = f * x .  f * y ( X )  = x .  y f , ( X )  = x .  y ( -  (X}) = - b x ( x , y  ) . 
( f , ( X )  = - ( X )  because f reverses the orientation of  X).  Therefore 
b x ( f * x ,  f ' y )  = - b y ( x ,  y )  implying that f *  exchanges the negative 
definite and the positive definite subspaces of  H2k(X,  ~ )  and therefore 
p = n or sig(bx) = 0. 

4. The Hirzebruch L-genus and the Hirzebruch A-genus (Hirzebruch, t966)  
of  X. These are characteristic polynomials in the Pontryagin classes of  X 
and split into components Li E H4i  (x, 2[ ) and A i ~ H4i (X, 77 ). It is a 
celebrated theorem of  Hirzebruch that the Lx-genus evaluated on the 

class (X)  is the signature of  X: L k ( X )  = sig(X). For the special case k = 1, 
this is the theorem of Rohlin and Thorn: L ~ ( X )  = ½. P1 (X)  = sig(X). 
For a spin-manifold (w 1 = 0 and w2 = 0) the characteristic number  
A k ( X )  is an integer which is even i f k  is odd. Therefore in the special 
case k = 1, A 1 (X)  = ~!4P 1 (X)  is an even integer, that is, P1 (X)  - 0 
rood (48), Then by the theorem of  Rohlin Thorn, sig ( X ) -  rood (16). 



346 G E O R G E  S.  W H I S T O N  

Cobordism Relations 

We shall need the following cobordism relations between closed, compact 
manifolds (Strong, 1969). 

Definition 1. Two manifolds X1 and X2 are called cobordant in the 
unoriented sense iff there exists a compact manifold H with ~H = X1 U)(2. 
The above cobordism relation will be abbreviated to O-cobordism. The sum 
and the product of manifolds induce the structure of a 7/2-algebra on the set 
Mo of O-cobordism classes. The algebra is graded into subgroups of O- 
cobordism classes of n-manifolds Mo n. Its structure was determined by Thorn 
(1954) who showed that two manifolds are O-cobordant iff they have the same 
Stiefel-Whitney numbers. Because Stiefel-Whitney classes are topological 
invariants, homotopically equivalent manifolds are O-cobordant. There is the 
following cobordism relation between oriented manifolds. 

Definition 2. Two oriented manifolds Xi ~ and X~" are called cobordant in 
the oriented sense iff there exists a compact oriented manifold H + with oriented 
boundary ~0 H+ = X~ W X~" (SO-cobordism). 

The set of SO-cobordism classes of oriented manifolds MSo is a ring graded 
by the subgroups of SO-cobordism classes of n-manifolds M~o. The structure 
of Mso was first fully determined by Wall (1960). A necessary and sufficient 
condition for two oriented manifolds to be SO-cobordant is that they have the 
same Stiefel-Whitney and Pontryagin numbers. Note that because the Lx 
genus is a function of Pontryagin classes, the signature is an SO-cobordism 
invariant. In a more restrictive version of cobordism, the Euler number is a 
cobordism invariant. This is vector cobordism defined by Reinhart (1963). 

Definition 3. Two manifolds X1 and X2 are called vector cobordant in the 
unoriented sense iff there exists a manifold H with 3H = X1 U X2 and H 
carries a one-frame field interior oriented on XI and exterior oriented on X2 
(O V-cob ordism). 

The set Mov of OV-cobordism classes of manifolds is a graded group whose 
structure was determined by Reinhart who showed that two manifolds are OV- 
cobordant iff they have the same Stiefel-Whitney and Euler numbers. The 
oriented version of vector cobordism is SV-cobordism also due to Reinhart. 

Definition 4. Two oriented manifolds X~- and X~ are called vector cobord- 
ant in the oriented sense iff there exists an oriented manifold H + with oriented 
boundary ~o H+ = Xi ~ t.) X~ and H carries a one-frame-field interior normal on 
X1 and exterior normal on X2. 

Reinhart determined the structure of the SV-cobordism group M s v and 
showed that two oriented manifolds are SV-cobordant iff they have the same 
Stiefel-Whitney, Euler and Pontryagin numbers. There is also a cobordism 
relation between compact spin-manifolds. 

• + S  1 Definition 5. Two spin-manifolds XI' and X~ "s~ are called spin- 
cobordant iff there exists a compact spin-manifold H +,s with spin-boundary 
~sH+,S = X~l,S~ U X~ ,s~ where ~'denotes the spin-structure opposite to s. 
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The set  f~/Spin of  spin-cobordism classes of  compact,  closed spin-manifolds is a 
graded ring whose structure was determined by Anderson, Brown & Peterson 
(1967). The f u n c t i o n  [Xlspin -'> IX[so is a ring homomorphism M~pin -~M~o 
whose kernel is non-trivial only in dimensions ~ 1 or 2 rood(8). 

The Cobordism of Space-Time Manifolds 

Because the Euter number is a vector cobordism invariant and space-time 
manifolds are defined to be those compact, closed, orientable four-manifolds 
with Euler number zero, vector cobordism is a natural tool to use in their 
classification. Any four-manifold vector cobordant to a space-time manifold is 
itself a space-time manifold. We shall also examine the other cobordism classes 
of  space-time manifolds although these cobordism classes contain four-manifolds 
which are not space-times. For example the space-time manifold S 3 x S 1 is 
SO-cobordant to S 4 which is not  a space-time. This is also a Spin-cobordism 
(w2(S 3 x S 1) = w2(S 3) = 0 since by a theorem ofWu i fZ  is a compact mani- 
fold of  dimension n - 3 rood (4), wn-I(Z) = 0; also w2 (S 4) = 0 because S 4 
imbeds in N 5 implying that the total Stiefel-Whitney class W(S 4) = Zi wi(S 4) 
satisfies W(S4). 1 = W(N s) = 1 and therefore wi(S 4) = 0 for i >/ 1 .) We shall 
construct groups of  cobordism classes of  space-time manifolds and examine 
their structure. 

Proposition I. Suppose that x :M~s V -+ 2[ is the mapping X: IX Isv -~ x(X) 
the Euler number of  X; X is a group homomorphism. 

Proof. X is a function because if [X[sv = [ Y tsv, x(X) = )~(Y);](is a group 
homomorphism because one can show that x (X U Y) = x(X) + x(Y)  by the 
fact that H , ( X  U Y; R) = H , ( X ;  R) • H , (Y;  N). 

By Proposition 1, ker(X) is a subgroup of M4v and it consists precisely of  
the SV-cobordism classes of  oriented space-time manifolds. We shall denote 
this group by K(SV). Consider the following commutative diagram: 

M~sv 

~° 

M~v 
for 

, M2o 

M~o 

The homomorphisms fs v and fov ' forget'  the vector structure, fv ° forgets the 
orientation in vector cobordism and fo  forgets the orientation in ordinary 
cobordism. In detail, fs v : IX [sv -~ IX [so ; fo ~ : IX [o v ~ IX [ o ; fv o : 
IX Isv ~ IX lov and f o :  IX l so ~ IX 1o. The groups K(OV), K (SO) and K(O) 
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are defined as f°(K(SV)),  fsV(K(SV)) and f°(K(SO)) respectively. It turns 
out that K(OV) and K(O) are trivial groups. 

Proposition 2. K(SV) is a subgroup ofker( fo°) .  

Proof. We shall show that i f X  is any closed, compact, orientable, four- 
manifold of even Euler number, then X has trivial Stiefel-Whitney numbers. 
The Stiefel-Whitney numbers of X are just: 

W 1 4 ( X ) 2 ,  W12 . w2(X)2, w I . w 3 ( X ) 2 ,  W22(X)2 and 

w4(X)2 

But recall that X is orientable iff wl = 0; consequently we need only examine 
the numbers w4(X)z and w22(X)~. By hypothesis, wa(X)2 = x(X) mod(2) = 
0. Now w22(X)2 =PI(X)  mod(2). The theorem of Rohlin-Thom: PI(X)  = 
3 sig (X) givesPl(X) rood (2) = sig(X) rood(2) and Poincar~ duality gives 
sig (X) =- x(X)rood(2). Therefore w22(X)2 = ×(X) mod(2) = 0. Hence any 
four-manifold of even Euler number is O-cobordant and in particular K(SV) 
must be a subgroup ofker( fv°) .  

Corollary 3. Any space-time manifold is the boundary of a compact five- 
manifold which carries a one-frame field interior normal on the space-time. 
Equivalently, if X1 and X2 are space-time manifolds, there exists a compact 
five-manifold H with boundary ~H = X1 U X2 and H carries a one-frame field 
interior normal on X1 and exterior normal on X2. The next proposition deals 
with the structure of the group K(SV). 

Proposition 4. K(SV) is isomorphic to the infinite cyclic group 7/. 

Proof Suppose that n is even and consider the complex projective plane 
C P n = S 2n + l / S 1 .  The cohomology algebraH*(C pn; R ) is the truncated poly- 
nomial algebra of length 2n on a two-dimensional generator. Hence the co- 
homology product: H n (CP n; • ) ® I-I n (CP n; R ) -~ H2 n (Cpn ; R ) induces the 
bilinear form been (x. g, y .  g) = xy for g the generator go k of Hn(Cp n, N ), 
x, y E R, go the two.dimensional generator of H*(Cpn; N) and n = 2k. There- 
fore sig(CP 2k) = +1 .x(CP 2k) = 2k + 1, therefore, for k = 1 we get sig(CP 2) = 
+ 1 and x(CP 2) = +3. The disjoint sum CP 2 u CP 2 has signature +2 and Euler 
number +6. Connect the manifold by excising a four-disc from each copy of 
CP 2 and identifying one of the resulting boundary three-spheres with S 3 x 0 
and the other with S 3 x 1 in the cylinder S 3 x L The resulting manifold has 
Euler number +4. By adding a pair of disjoint one-handles, one S 3 x I to the 
remaining part of each CP  2, we obtain a compact, closed, orientable four- 
manifold Xo of Euler number zero and signature +2. (The fact that Xo has 
Euler number zero is due to our construction. Because Xo was obtained from 
2. CP 2 by spherical modification and spherical modification preserves oriented 
cobordism class, Xo has the same signature as 2 .CP 2. It can be shown that 
sig(X t3 y )  = sig(X) + sig(Y).) Recall that i f X  is a space-time manifold it has 
even signature: sig(X) ~ x(X) mod(2) = 0. We shall show that IX ]sv = 
½ sig(X). IXo Isv. Now X, Xo and therefore ½ sig(X).Xo have Euler number 
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zero and therefore trivial Stiefel-Whitney numbers. Moreover, sig(½ sig(X). 
Xo) = ½ sig(X),  sig(Xo) = sig(X). Therefore, by the theorem of  Rohtin-Thom, 
P1 (X)  = P1 (½ sig (X) .  Xo). The assertion now follows because X and ½ sig (X) .  
Xo have the same Stiefel-Whitney, Euler and Pontryagin numbers. It is clear 
that IXo lsv generates K(SV) and that the function IXIsv -+ ½ sig(X) is a 
group isomorphism K(SV) -~ 2~. 

Corollary 5. K(SO) = 2. M~o. 
Proof We shall show in the next proposition that  [CP 2 Iso generatesM2o. 

The corollary will then be a direct consequence of the fact that [Xo lso = 
2 I CP  2 [so (because X o is obtained from 2 . C P  2 by spherical modification). 
Another way to prove the corollary is as follows. Consider the mappings 
2X n :M~o -+ ~-2 defined by 2X n : I X  [so ~ x(X)mod(2). If n # 3 rood(4), 
2X n is a function. For if IXtso = I Y Iso, there is an oriented, compact,  
(n + 1)-manifold H + with oriented boundary 00 H+ = X + U Y-. Glue H + and 
H -  by identifying the manifolds X and Y in their boundary components to 
obtain a closed, compact,  oriented manifold H&H with x(H&H) = 2x(H)  - 
x(X) - x(Y). Because (n + 1) * 0 rood(4), ×(H&H) is even, implying that 
x (X)  -= x(Y) rood(2). In dimensions n ~ 0 rood(4), the functions 2X n are non- 
trivial. They are group homomorphisms because ×(X U Y) = X(X) + x(Y). In 
the special case of  dimension four, we claim that ker(zX 4) = K(SO) = 2M~o. 
Obviously K(SO) is a subgroup of ker(2X4), conversely, if X has even Euler 
number, one can modify X into a manifold of  Euter number zero. (If  ~(X) = 
2k > 0, add k disjoint one-handles. If  ×(X) = 2k < 0, excise the interior of  a 
region diffeomorphism to D 3 x S 1 and identify the resulting boundary S z x S 1 
to the boundary S 2 x S 1 o f S  2 x D 2. This spherical modification increases the 
Euler number of  X by +2 and is repeated k-times (taking disjoint regions in 
turn).) The modified manifold is in the SO-cobordism class of  X. Therefore 
K(SO) = ker(2X4). Any class in 2.  M2O is obviously of  even Euler number. 
Conversely, if a manifold has even Euler number,  we saw above that it must 
be O-cobordant and hence lies in k e r ( f  ° :M~o -+Mo4). By a theorem of Wall, 
k e r ( f  °) = 2 .  M2o. (A similar result holds in each dimension.) 

Proposition 6. The function sig : M~o ~ Z, sig : ISlso -~ sig(X) is a group 
isomorphism. 

Proof Because signature is an oriented cobordism invariant, sig is a function. 
It is a group homomorphism because it is additive over disjoint unions. 
Ker (sig) = 0, because if an oriented, closed, compact four-manifold X has zero 
signature, sig (X) = 0, then P1 (X)  = 0 and the fact that sig(X) = X (X) rood (2) 
implies that x(X) is even and hence that X has trivial Stie fel-Whitney numbers. 
Therefore IX lso = O. sig is an epimorphism because for any integer 'rn' there 
exists a closed, compact,  oriented manifold of signature m. (If m = 0, take 
X = $4; if m 2> 0, take X = m.  C P 2  and if m < 0, take X = t m 1. C P  2 (-~.) 
Because s ig- l (1)  = Le/'21so, ICP 2 Iso freely generates M~o. 

Recall that in Proposition 2 we proved that K(SV) is a subgroup of  ker(fvo).  
The next proposition deals with the structure of  ker (fv °) using results of  Wall 
and Reinhart. 
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Proposition 7. If  n is even and if IX ]sv E ker(/v o :M~v -~M~v), there 
exists an oriented, closed, compact n-manifold Y+ such that t X t s v  = 2JYt sv  + 
rn. ]S 4 Isv, where rn is given by ½(×(X) - 27((I0). 

Proof If  [Xlsv E ker(fvo), fsv(tX Is v) = IX[so E ker(fO).  For 
fo o fsV(lXIsv) = fov o jvo([x[xv) = 0. By the theorem of Wall, k e r ( f  °) = 
I ra (2 . )  where 2 ,  denotes multiplication by two in the abelian group M~o. 
Thus there exists a closed, compact,  oriented n-manifold Y such that IX[so = 
2[Y[so implying that ]X]sv - 2 [Ylsv E ker(fsV). By a result of  Reinhart, 
ker(fs  ~) is free cyclic on JS n tsv for even n. Therefore there exists a integer m 
such that [Xlsv = 21YIsv  + m. IS n [sv. Because the Euler number is a vector 
cobordism invariant m is given by x(X)  = 2x(Y) + 2rn. (x(S n) = 2.) 

Corollary 8. If  IXlsv ~ K(SV), [Xlsv  = 2 ]Ylsv  - 2x(Y)lS4]sv for 
some closed, compact,  oriented four-manifold Y unique up to SO-cobordism. 

Proof The result follows directly from the proposition. Y is unique up to 
SO-cobordism because if 2 t Y ' J s v  - x ( Y ' ) t S 4 t s v  = [ X l s v  = 2JYIsv - 
x(Y)  [S4lsv then 2. [ Y' Isg - 2 I YI s v  = (x(Y')  - x(Y)) I S a l s v  and there- 
fore [YIso = [Y'Jso because [S4[so = 0 andM~o has no two-torsion 
(ker(2 . )  = 0). 

Note that for a given space-time manifold X, I XIso = s i g ( X ) [ C p 2 l s o  so 
that a possible choice for Yis Yo = ½ s ig (X) .CP  z. Therefore by Corollary 8 
one can write lX isg  = sig (X) .  ICPZlsv - ~ sig(X), t s 4 t s g  . We next con- 
sider the spin cobordism of spinor space-time manifolds. 

Proposition 9. Two spinor space-time manifolds are spin-cobordant iff they 
are SO-corbordant iff they have the same signature. Any four-dimensional spin- 
manifold is SO-cobordant to a space-time manifold. 

P roof  (i) We noted earlier that the kernel of  the canonical homomorphism 
M~pin -~M~O w a s  zero in dimensions not congruent to 1 or 2 mod(8).  There- 
fore M4pin ~M4o is a monomorphism and two spinor space-times are spin- 
cobordant iff they are SO-cobordant. (ii) A spin-manifold is defined to have 
w 1 = 0 and w2 = 0. Therefore, because x(X) mod(2)  = w22(X)2 for a four- 
manifold, a four-dimensional spin-manifold must have even Euler number. 
Hence one can modify X into a space-time manifold in the oriented cobordism 
class o f AT. 

It is clear that the topology of  a space-time manifold must place restrictions 
on the topology of  any manifold that it bounds. There are the following 
immediate results. 

Proposition 10. (i) I f X  is a space-time manifold with non-zero signature, 
X is not  the boundary of  any simply-connected hypermanifold. (ii) I f  sig(X) = 
0 and therefore X bounds an oriented hypermanifold, H can be simply- 
connected but cannot be contractible. 

P roof  (i) I f X  bounds a simply-connected manifold H, H must also be 
orientable which implies that X is SO-cobordant and therefore that sig(X) = 0. 
(ii) I f X  is the oriented boundary of  a simply-connected manifold H, H cannot 
be contractible. Because x(X) = 0 = 2 ( t  - t31 (X)) + ~ ( X )  and/32(X) >~ 0, 
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~I(X)  :~ 0 and therefore Hi(X,  ~ )  4: O. Therefore by looking at the exact 
cohomology sequence of  the pair (H, X): 

"* I i *  1 . d _ ~  ...-+ul(u,x;R)£u (H;R)--+H (X,R) Hg(H,X;U)--... 
and using the fact that H simply-connected implies that Hi(H; R) = 0, the 
connecting homomorphism d* is a monomorphism. Thus H 1 (X, ~ ) 4= 0 
implies that H2(H, X; ~ ) ¢ 0. The Lefchetz duality theorem (Hq(Z, OZ; N)  
Hn_q(Z;•) for an n-manifold Z orientable over N) implies that H3(H; •) --/= 0 
and hence that H cannot be contractible. Note that the space-time X = S a x S t 
is an oriented boundary, X = 0o(D 2 x S 3) and tha tD  2 x S 3 is simply connected. 
This shows that a compact, oriented space-time can bound a simply connected 
hypermanifold. 

It would be interesting to define a cobordism theory using pseudo- 
Riemannian structural groups instead of  the Riemannian structural groups 
O(n) (unoriented cobordism); SO (n) (oriented cobordism) and Spin(n) 
(Spin cobordism). For example the following cobordism relation gives a 
cobordism between psuedo-Riemannian structures on manifolds. Recall that a 
time-oriented Lorentzian structure on a manifold is equivalent to putting a 
one-frame field on the manifold, if the manifold is compact the vector field 
defines an action of  the group ~ on X. Consider the following relation. 

Definition 6. Suppose that (X1, al)  and (Xz, a2) are compact manifolds 
with R-actions at  and a 2. Then (X1, a l )  and (X2, a2) are called cobordant iff 
there exists a compact manifold (H, A)  with boundary OH = X1 U X2 such 
that the R-action A restricts to al on X1 and to a2 on X >  

Such cobordism relations were introduced by Conner and Floyd (1964). 
who were interested in the actions of  the groups Zp on manifolds. If  one 
restricts attention to a given manifold X, one obtains the cobordism group 
Aa(X)  of R-actions on X. It would be interesting to calculate such a group for 
a space-time manifold X: A cobordism of two ~ -actions being viewed as a 
deformation of  the corresponding Lorentzian structures into each other. 
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